$\begin{array}{c} F_{11}, & Y \\ R_{11}, &$

aq. a. b. I. 80 c. $(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a$

FIG. 1. I cl ac . . (A) F, aq 80 FLAG a db au C. ca 1 **R** (ba d J-ac, ra d a a a a db SDS-ac, da da a °, R. (B) T 's ċ, ā R. 80 c a_{lı i} . . . **.** . d ďI " RR R a.a. (0.5 μ.). , C 80 c c ba d с . 2 ⊾^{ia} R C Å (8) d . **₽** }. S (+) , ab c ATP. T ĎNA_ (c. C. ac Ģ. a 1 d. L. L. a d i a b, DNA Ģ., d. 1. a. 61.1 1 1.1.2 c a ÷ 1. 0.1 DNA , a 80. (C) Sc d1 la c. ac **d**. (D) A I c1, а N. L. a. ad YY1, PHO, a d GLI3. The additional additional additional additional additional definition additionadditional definition additional definition additional

- c, di..., ad, d_1 , d_2 , d_3 , d_4 , d_7 , d_8 , d_1 , d_1 , d_2 , d_1 , d_2 , d_3 , d_1 , d_2 , d_3 , d_4 , d_5 , d_8 , d

662 HOGAN ET AL.

		,	,
TABLE 3.	O alla	-PCR	, 🖣 a

La	S , ,			
L. C, 1	S NI T	ARE I RI CARL		
. 1	5'-CGTTCATGCCTACATCTTAATACAGG-3' 5'-TTGGAACGGCAATGTGCTAGT-3' 5'-TTAAGGTAGCGTTCAATGTTCTTGC-3' 5'-GACATGGTTCTCGTAATCCTACCG-3', 5'-CAACTTGGACTCCTGTTATTGAAGC-3' 5'-TTACGAGCGTTACCATGAGCTC-3' 5'-TCAGAGAATGCTACTGCTGGATC-3' 5'-CCTGCTCTCGAAGCTTGGAG-3' 5'-CCAACTATAATCTTACCAACGACGA-3' 5'-GAGGTGCCTATGCTAATAGCCTTG-3' 5'-CTTCCTACCAAGTCCACTCC-3' 5'-GCCATCTTGTTAACGAGGAGGT-3'	5'-ACTACCGCGTAGCGATGAGAA-3' 5'-GCAGAGTGCGAACATGAGACC-3' 5'-ATTCAGCGAACTGAGCGTTG-3' 5'-CAATAGGAACTGATCCATTAAGCAAT-3' 5'-AGAGCTCATGGTAACGCTCGTAA-3' 5'-GAATCTACAACGCGCTGCTG-3' 5'-TTCTCCAAGCTTCGAGAGCA-3' 5'-CGTCGTTGGTAAGATTATAGTTGGAA-3' 5'-CTTACAGAATTCGCTATAGTCTTGAA-3' 5'-CAACAGGAATAATATTGGCATCATG-3' 5'-GCGGACATAGTACTTAGAATCTTCAC-3' 5'-AGGCGTACAACTCACACATACCA-3'		
	5'-ATGGTATGTGTGAGTTGTACGCCTA-3' 5'-AACCTATACGTGCACAACGTTGT-3'	5'-AGCAGCCACAGCACTAGCATT-3' 5'-GGTATCGCGTAATTAGTCATCTCTTC-3'		
	5'-AGATAGCAGACTAATACTCTTTCAATGCC-3' 5'-TCCAATGTAGTCGTGCCGAA-3' 5'-AAGTTCGTTGATTGAATAGACTACCG-3' 5'-CATCCATCGTTCATGCTGGTA-3' 5'-AGGACCATCTTGGAACGATTAGTG-3' 5'-AATGCCGACCAGTTGTCCAG-3' 5'-GATGTCTACGATATCAATACTGCTGCTC-3' 5'-AGCCTATCGCCAATCGCTTA-3' 5'-GTGTGAATAATGCTTCCGATCGT-3' 5'-CCATTAGAGGTAGAATTAACACGAACC-3' 5'-TTGTGTCGTTCGTGTGTGGTGAA-3' 5'-AACCAGCTATCCGGAATTACCA-3'	5'-TTGTACGAGCTGCTACATAATATTGC-3' 5'-AAGCGCAAGAAGCAGCAGAT-3' 5'-TGTATGAATCAACCAACGACCAG-3' 5'-CATGATATACACTAATCGTTCCAAGATG-3' 5'-GATCCATGACGCTGAAGCAA-3' 5'-GAGCAGCAGTATTGATATCGTAGACATC-3' 5'-CGGAAGAACGATGAAGTTGGTT-3' 5'-TCGCTGTTATCTCTGAGAGCGA-3' 5'-AAGAGCAGCCTCGACTGGAAT-3' 5'-TTACTGATTGCGGTTATGGTCCT-3' 5'-TCTCAAGATATAACGCGTACATTAACG-3' 5'-ACACATGCGGTAATCAGATGAGTT-3'		
<i>,</i> . ¹	5'-GAACGGAGAGAAGGAAGGAGCGAT-3' 5'-TAATGATGAACAACGGATATGACTGAA-3' 5'-TTCGCTGCATAGACGGTAACG-3' 5'-GAGGTTGGATAGGAACGGTGA-3' 5'-TTGGTCGTCGTAAGCTACAATAAGG-3' 5'-GTTGACGACATTCTTGCTACTGGT-3' 5'-CGTAAGCGTCTTATGGCTCCTACT-3' 5'-ATATGACCGCAAGTCTATACACATGC-3' 5'-CATCCGTGATGAGAATTAACAATCC-3' 5'-GGGAATCTTGTTTGAAGATATAATGCC	5'-AATCTTACGCCTCTACATTACTCGTT-3' 5'-AACTGTCAGCCACAACTCCATGT-3' 5'-AGGTAATTGATTCTATCGTCGGACA-3' 5'-TTAAGCAATTGCAAGGCGTAA-3' 5'-CCACCAGTAGCAAGAATGTCGTC-3' 5'-GGAAGAGATGTCCAACTAATTCACC-3' 5'-ATTCACTACCATCAGGTGCTTCATC-3' 5'-TCGTACTTCCAAGGAACTCCAGTT-3' 5'-GCTCCACTTGGCAACTGCTC-3' 5'-CCAACAATCACATCAATGTTATTGA-3'		
,, ¹	5'-AGATTCACCAGACATGATTACTGAGTG-3' 5'-GAAGTTGTCAAGAGTGTTGCTGCT-3' 5'-AATGCGAGCATCATGTGCAT-3' 5'-TGCTGTGTCTGTGTTGATTGAGG-3' 5'-TCTGCGTCACTTGCCTTCTG-3' 5'-GCAGGTGAAGAAGGTGATCCA-3' 5'-GAGTTAATGAAGCGAGTTGCAGAAG-3' 5'-GGCGGTTACACCTTGGAGAA-3' 5'-AATGAGCAGGCCATGTTAACATC-3'	5'-TTCATCACGACATGGCCAAT-3' 5'-ATCGCTCCATCCGTTACACC-3' 5'-CGCAGCATCATCACTAGGAAGA-3' 5'-TGAACTCCTTGTGAATGAGCGAT-3' 5'-CCTGCAACAATTCCATTCTCAA-3' 5'-TCTGCAACTCGCTTCATTAACTCT-3' 5'-GGCAATAGAATTGACACAACGAAGT-3' 5'-GCCGTTGATAGCAGCATTAGC-3' 5'-CCTGAAGACCTAGCCAGCCAT-3'		
, 1	5'-TTGTGCTCGCATCTGGAATG-3' 5'-CGGTCGTGAACATACCATCG-3'	5'-GTAATGTACAATATCGCTGCATCGTT-3' 5'-AGATTCCGCTCCATTGCTTG-3'		
	5'-GTTCAATCTCATAGAGCAGGTTGGTAG-3'	5'-TACGCGTCTCAATTGCAACG-3'		
· · • •	5'-CCTTCCGTCCTCTATGCCATC-3'	5'-TCAATAATCATCTTACAAGACCGGAA-3'		
. • •	5'-CCCCAAATCCAACCGTGAGA-3'	5'-GGCATACAAAGACAAAACAGCTTG-3%		
1	5'-TGCTCAGTGCCAGAGTGTGATAG-3>	5'-GGTCCGAAGGCCGTAGTGTA-3'		

 \cdot U d \cdot RNA , a \cdot ca .

b. $a_{a_{1}}$ (F. 1E a d F). HAt a d I c1. a d d f c. a_{1} , c. a_{1} , ca d a_{1} , ca a a_{1} , I c1 c a_{1} , d a_{1} , c. b_{1} , c. b_{1} , ca a a_{1} , I c1 c a_{1} , d a_{1} , b a I c1-I, 80 c. c. (Tab 4). T. c. a_{1} a d, b a I c1-I, 80 c. c. (Tab 4). T. c. a_{1} a d, b a I c1-I, 80 c. c. (Tab 4). T. c. a_{1} a d, b a I c1-I, 80 c. c. (Tab 4). T. c. a_{1} a a a c. a d a_{1} , c. a_{1} , c. a_{1} , YY1/PHO-I, 80 c. a a a a c. a d a_{1} , c. a_{1} , d a_{2} , f a a a a c. a d a_{1} , a c. a_{2} , f a a a a c. a d a_{1} , a d a_{2} , f a a a a c. a d a_{1} , a d a_{2} , f a a a a c. a d a_{1} , c. a_{1} , f a d A 5/A 8 (Tab 4) (10, 41, 82). W c c c d d a a a_{2} , f GLI-K, f a a c. c. a_{1} , b a_{1} , c. a_{1} , YY1, a d a_{2} , a a_{1} . S0 a_{1} , a c. c. a_{1} , b a_{2} , f a c. c. a_{1} , b a_{2} , f i c a d a_{1} , f i c a d a_{2} , f i c a d a_{1}

a, d, ..., HU, i, i, i, d, i,

 $\begin{array}{c} \vdots & \vdots & a_{1} & b_{2} & \vdots & DAPI \\ a_{1} & b_{2} & b_{3} & c_{1} & b_{2} & b_{3} & c_{1} & b_{2} & b_{3} & c_{1} & c_{1} & c_{2} & c_{2} & c_{2} & c_{3} & c_{3} & c_{2} & c_{3} & c_{3$

Iec1 e edf e e e fee ed ade ead \mathbf{A} \mathbf{A} a e eab \mathbf{A} \mathbf{W} as de tab. (49, 60, 61). W, a_1, b_1, b_2 . I, c, d, a = 1, a, i = 1

b d, ξ_{1} , ξ_{2} , ξ_{3} , ξ_{4} , D ξ_{1} , I HU (da a i c i, a d, i, HU (da a i). W a, dd ..., b, c di, ξ_{1} , ξ_{2} , ξ_{3} , ξ_{4} 376 c 3 d 4 5 5 10 b 10 c 10 d 4 c 3

I 80 a e ed ? .e. f. ?? a e- e. ? . e

 $[a_{k}, a_{k}] = [a_{k}, a_{k}] = [a_{$

, **?**, FIG. 4. I c1 , , , , d , , G SA001) a d Δ 1 (CH003) c ., c ., c . 1, . T . c . . I . a . c . ₩, (WT; ., , .1, a d , a a C. ÷ R da, $a_{\mu}a$ d. a a а b PCR X 4 (Bill) Q, all ca C. d a a (WT). T d c ł C. da d (B) N ba a ١a j, ί Β N. ... (SA001) a a 25S (CH003) C. Δ c Т a_k a a C. ą . 1. a c d c a a d. B с . a С, а a а a ł 2 d RNA b ab с T). T ba, £., a d c a a 🍐 ą П) C N с c, r ą b D, WT c . (C) T (EMM) a d а ą ł а • (... a... • X k Þ a_{lé} d b a PCR RNA. T, di. aq $^{\prime}$ 1 ۴. a_{k i} k EMM. T WT a, da, d d ba, (D) 11 a, Ν ã <u>п</u>... 11 a a , a d ł a đ d c a a, d а, a¢ d ã 11 1 6 П d a d , d a a , c , c (SA001) a d , a, a €. a €. a_{l i}a d , c ia

FIG. 6. I c1. da b d I. 801 i a i I. 801 c a c I. 80 c i (WT; SA001) a d Δ *I* (CH003) i a a d i d b C IP a i *I* c (A) a d a i *I* , *I* , *I* , *I* a d *I* c (B) i - i a d a Sc a c i i a a d i i c (C) I. 80 c a c I 80 c i (C) (C) a d a a d a sc a c i i a a d i a c d a a a d a c a c i a d a a d a c a a d a c i a d a a d a c a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a c i a d a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a d a c i a d a a d a c i a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d a a d a c i a d

I 80 c C. R R b, dd a, į., į. c a I c1 , YY1 , . W a, i, i. I c1-I 80 c , c da_k 1. J. . . Ł. a d a a a Y 4) (10, 41, 82). W YY17PHO-I 80 c a YY1 ca (Tab j. d, 1 ca. (HU), i -L I cl L L . ç X 1 R. Га., Г , a, d ... i. . i. , ad a d R R YY1 ca a_k d dī, a , , a , I c1 a, 1, b12, 2, 2 ŗ d y b in с Т. c di La La d a d). YY1 b d 1 a · N -(da a 📜 . °c, c

14, Q., d DNA (..... с b b d , a R, a _ . DNA) а с a_{k k} , (82). ł d , , , _R C W c i a I c1 b c.c a d 1. b 1 b, ad d (F . ia. 7). Ģ , C d a d a b d , C ſ C. cc, Va c ۲aç 🕈 c. c a j ۶. ۱ c, a "⊾ a I c1 L. R DNA 1, Q., , . ., L. الأراف -DNA a , d , c

FIG. 7. I c1 , c, i di , c, i di , c, i di i ab , c, i di i ab , c, i P. a MYC i a di c1 i.a (CH016) , ..., i A a B. EMM. a ..., da i ..., i, a di ci , a b d c i... a d. ..., i da a ..., i a di ci , a b d c i... a d. ..., i da a ..., i a da ...,

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} a_{1} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{4}$

 $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ A a d c b i C. 🛔 b, dd ar a d al le ., c, a a b, c, , B, dd Ł. , -, d, c, , a., ., aj bij, ji $a_{1}, a_{1}, b_{1}, \dots, b_{n}, c_{n}, a_{n}, c_{n}, a_{n}, \dots$ a db $\begin{array}{c} \mathbf{k} \\ \mathbf{$ ٤., C. . . ۲. 9 a. Ł. c, a, ab aji. T C-. ¥ 1 2 $a_{1} \downarrow a_{1} \downarrow a_{1} \downarrow a_{1} \downarrow a_{1} \downarrow a_{1}$ $\begin{array}{c} \mathbf{a} \quad \mathbf{b} \quad \mathbf{a} \quad \mathbf{c} \quad \mathbf{a} \quad \mathbf{c} \quad \mathbf{c} \quad \mathbf{a} \quad \mathbf{c} \quad \mathbf$., 12.

ACKNOWLEDGMENTS

. d, b -d x., t, xt, G.d, ... t, b, c

- 25. Ga a , P. 2007. C , b P. . . . a d R . . . T. . d C B . 17:187 192.
- 26. Ga aa, V. K., a d B. Ba. e. 2007. M c a ATP d A
- **8:**35 46.
- 29. G , C., J. K , J. M , a , a d K. Ma de . 1988. G , \vdots c , \vdots , \vdots , a d , \vdots , i
- 30. He , , N. L., A. M. Ca 3be , W. J. Fea e , D. P , P. A. We , a d R. D. K be . 1994. TFIIF-TAF-RNA , a II c , G , G , D . . **8:**2868 2878.

- 34. **Î**
- 35. Je **293:**1074 1080.
- 36. J., J., Y. Ca, T. Ya, A. J. G., ca, L. Fe, S. K. Sa, J. L. G. ee, M. K. Cea, J. L. Wa, A. M. ea, M. P. Wab, R. C. Caa, ad J. W. Caa, 2005. A an aa, c. a, f. d construction of the state of the state of the state of the state construction of the state of the stat
- 1009 1014.
- 38. J ..., Z. O., S. J a, J. A. W ... c e e, a dA. D ... a. 2004. R b1 / R b2 , c. i. A 5 a, da, b a , c. a I, 80 c. ... a , b d , c. M. C 16:465 477.