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G-proteins, which are released upon stimulation of GPCRs
[2,3,21]. This dual mode of regulation makes P-Rex family GEFs
ideal coincidence detectors for the concomitant activation of PI3K
and GPCRs. Synergy of PIP3 and G�� subunits is also required
for P-Rex1 translocation to the plasma membrane [22]. PIP3 binds
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with HisÐP-Rex2-(983Ð1187), equimolar amounts of GST and
GSTÐPP1�were preincubated for 1 h at 10� C with glutathione
agarose prior to the addition of HisÐP-Rex2-(983Ð1187) for 1 h
and analysis of precipitates by SDS/PAGE and Western blotting.
For binding assays with native P-Rex1, 50 pmol of GST or
GSTÐPP1�were incubated with 8 pmol of native pig-neutrophil-
derived puriÞed P-Rex1 for 1.5 h at 4� C, before pull down
with glutathioneÐSepharose, washing (in PBS, 1% Triton X-
100, 5 mM EGTA, 1 mM EDTA, 25 mM NaF and 20 mM 2-
glycerophosphate) and analysis by SDS/PAGE (8% gel) and
Western blotting.

Co-immunoprecipitation assays
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Figure 1 P-Rex1 and P-Rex2 are PP1� -binding proteins

(A) Dose-dependent inhibition of the phosphorylase phosphatase activity of puri�ed rabbit PP1 by puri�ed Sf9-cell-derived full-length human EE–P-Rex1 and EE–P-Rex2. Results are means+Š S.E.M.
(n= 3). (B) Schematic representation of the RVxF motif in P-Rex1 and P-Rex2 and its mutation in P-Rex1 VAFA. (C) Binding of native P-Rex1 to GST–PP1� . Equimolar amounts of GST–PP1�or
GST were incubated with puri�ed native pig P-Rex1 prior to pull down with glutathione–Sepharose, SDS/PAGE and Western blotting (WB) with anti-P-Rex1 and -GST antibodies. Molecular mass
markers are given in kDa on the right-hand side. (D) Far-Western: immunoprecipitated eGFP–P-Rex1 (full-length) was subjected to SDS/PAGE and Western transfer. The membrane was cut into strips
which were incubated separately with GST–PP1�in the presence or absence of excess RVxF peptide, or with GST, as indicated, and then together with anti-GST antibody. The strip in the left-hand
panel was incubated with anti-GFP antibody. (E) P-Rex1 forms a complex with PP1� in vivowhich is disrupted by mutation of the RVxF motif. Lysates of COS-7 cells expressing EE–P-Rex1 WT,
EE–P-Rex1 VAFA and/or eGFP–PP1� were subjected to immunoprecipitation with an anti-GFP antibody. Western blot analysis of precipitates and total lysates were performed with anti-P-Rex1 and
anti-PP1�antibodies. Blots shown are from one experiment and representative of three. Molecular mass markers are given in kDa on the right-hand side. (F) Endogenous P-Rex1 forms a complex
with endogenous PP1� in vivo. HEK-293 cell lysates were subjected to immunoprecipitation with an anti-PP1� antibody. Western blots of precipitates and total lysates (TL) were performed using
anti-P-Rex1 and -PP1� antibodies. Blots shown are from one experiment and representative of four. IP, immunoprecipitation.

at http://www.BiochemJ.org/bj/443/bj4430173add.htm). It bound
PP1 activity to a similar degree as did eIF2� -(1Ð144), a known
PP1 interactor, unlike eIF2�-(1Ð144) with a mutated RVxF motif
(mut) which did not (Supplementary Figure S1B). As most PP1-
interacting proteins inhibit the constitutive catalytic activity of
the phosphatase [32], we tested whether this was also the case
for P-Rex2. Indeed, the P-Rex2 fragment inhibited PP1 activity
in vitro to a similar degree as eIF2�-(1Ð114) (IC50� 500 nM);
full-length P-Rex2 was even more effective than the fragment
(IC50� 200 nM), whereas eIF2� -(1Ð114) (mut) again had no
effect (Figure 1A and Supplementary Figure S1C).

The RVxF-type PP1-docking motif is highly evolutionarily
conserved between the full-length members of the P-Rex family
(Figure 1B and Supplementary Figure S1D). Hence it seemed
plausible that the interaction with PP1 is conserved between
P-Rex1 and P-Rex2. Indeed, full-length P-Rex1 also inhibited PP1
activity, to a slightly greater extent than P-Rex2 (IC50� 50 nM)
(Figure 1A). The known mechanisms of regulation are very
similar between different members of the P-Rex family, but most
previous characterization work has been done on P-Rex1, so we
focused on the interaction of P-Rex1 with PP1 from this point
onwards. We tested binding of native P-Rex1 to PP1� . PuriÞed
native P-Rex1 from pig neutrophils bound to puriÞed recombinant
bacterial GSTÐPP1�, but not GST, suggesting that the interaction

between P-Rex1 and PP1� is direct and independent of additional
proteins (Figure 1C). We conÞrmed this by far-Western analysis
of eGFP (enhanced GFP)ÐP-Rex1 binding to GSTÐPP1� . eGFPÐ
P-Rex1 bound to GSTÐPP1�, but not GST, and could be competed
off with a synthetic RVxF-containing decapeptide, indicating that
direct PP1� binding to P-Rex1 is mediated through the RVxF
motif (Figure 1D).

To investigate whether P-Rex1 and PP1� interact in vivo,
we overexpressed eGFPÐPP1� and EEÐP-Rex1 in COS-7 cells
and analysed anti-GFP immunoprecipitates by Western blotting.
EEÐP-Rex1 co-immunoprecipitated with eGFPÐPP1� , suggest-
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Figure 2 PP1� stimulates P-Rex1 Rac-GEF activityin vitro

(A) Native rabbit PP1 activates P-Rex1in vitro. The Rac2-GEF activity of Sf9-cell-derived puri�ed human EE–P-Rex1 was assayed with the indicated concentrations of stearoyl-arachidonoyl-PIP3

and/or G�1� 2 after a 30 min pre-incubation of P-Rex1 in the presence or absence of 100 nM native rabbit PP1. Results are means+Š



178 M. A. Barber and others

Figure 3 PP1� stimulates P-Rex1 Rac-GEF activityin vivo

(A) PP1� stimulates P-Rex1 WT, but not P-Rex1 VAFA, Rac-GEF activityin vivo. Pak-CRIB pull-down assay for endogenous Rac1 activity in serum-starved HEK-293 cells expressing Myc–P-Rex1
WT, Myc–P-Rex1 VAFA and/or eGFP–PP1�, stimulated with (right-hand panel, dark grey bars) or without (right-hand panel, light grey bars) 50 nM LPA for 1 min. The GTP-loading of Rac1 (left-hand
panel, Rac1 activity), and the expression of Rac1 (2% of the total loaded), P-Rex1 and PP1�were assessed by immunoblotting. The left-hand panel shows blots from one experiment that is
representative of four. The right-hand panel shows densitometric analysis of four experiments (two for untransfected cells). Results are means+Š range or S.E.M., as appropriate. Signi�cance was
determined using Tukey’s Honestly Signi�cant Difference test. (B) Phosphatase-dead PP1� cannot stimulate P-Rex1 Rac-GEF activityin vivo. Pak-CRIB pull-down assays as in (A), measuring
P-Rex1 Rac-GEF activity in serum-starved HEK-293 cells upon co-expression with either eGFP–PP1� WT or phosphatase-dead eGFP–PP1� R96A. (C) PP1� and PP1�can both stimulate P-Rex1
Rac-GEF activityin vivo. Pak-CRIB pull-down assays, as in (A), measuring P-Rex1 Rac-GEF activity in serum-starved HEK-293 cells upon co-expression with either eGFP–PP1�
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Figure 5 Ser1165 is a PP1� target dephosphorylation site on P-Rex1
important in the regulation of P-Rex1 activity

(A) Phosphoserine content of puri�ed recombinant Sf9-cell-derived P-Rex1 (25 nM) after
incubation with or without recombinant PP1� (500 nM) for 30 min. Shown is a Western blot
analysis fromoneexperiment that is representativeof two. (B)Gel-migrationpropertiesofP-Rex1
WT and P-Rex1 VAFA. Lysates of PAE cells expressing EE–P-Rex1 WT or EE–P-Rex1 VAFA
together with eGFP–PP1� were subjected to anti-EE immunoprecipitation and precipitates were
analysedbyanti-P-Rex1orphosphoserineWesternblotsas indicated. (C)MSofphosphorylation
sites in P-Rex1 WT (grey bars) and P-Rex1 VAFA (black bars). EE–P-Rex1 WT and EE–P-Rex1
VAFA were expressed in PAE cells (without exogenous PP1� ) and anti–EE immunoprecipitates
were subjected to SDS/PAGE. P-Rex1 bands were isolated, digested either with trypsin,
chymotrypsin or AspN, and subjected to LC–MS/MS. This achieved 96% coverage of P-Rex1
and revealed ten phosphopeptides on to which ten serine phosphorylation sites were mapped.
Their level of phosphorylation (compared with the total peptide) was measured by MS, and was
suf�ciently high for analysis in the eight indicated sites. (D) P–Rex1 WT, P–Rex1 Ser1165A
or P-Rex1 ‘cluster’ mutant were expressed in HEK-293 cells with or without eGFP–PP1�,
serum-starved and subjected to a Pak-CRIB pull-down assay to measure endogenous Rac1
activity. Results are means+Š S.E.M. for four independent experiments. Signi�cance was
determined using a Student’st test.

HEK-293 and PAE cells showed no obvious changes in the largely
cytosolic subcellular localizations of P-Rex1 and PP1�upon their
co-expression (results not shown).

We next compared the gel-migration properties of EEÐP-Rex1
WT and EEÐP-Rex1 VAFA upon co-expression with PP1� in
basal PAE cells. Immunoprecipitated P-Rex1 WT migrated as
a doublet like Sf9-cell-derived P-Rex1, whereas P-Rex1 VAFA
lacked the lower band and gained a higher band, indicative of

higher phosphorylation levels (Figure 5B). A similar pattern was
observed in phosphoserine Western blots (Figure 5B). Hence,
although the ability of P-Rex1 to bind PP1� does affect gel
migration, it has no major impact on global P-Rex1 phosphoserine
levels, suggesting that PP1� target sites represent a minority of
all P-Rex1 phosphorylation sites.

To identify the site(s) of PP1� -dependent dephosphorylation,
we analysed PAE-cell-derived P-Rex1 WT and P-Rex1 VAFA
by MS, reasoning that PP1�target residues would be more
highly phosphorylated in P-Rex1 VAFA. Importantly, we did
not overexpress PP1�in these experiments, but relied solely
on endogenous PP1�in order to reveal only physiologically
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in vivoRac-GEF activity levels is not straightforward and should
be addressedin vitro in the future by assessing the Rac-GEF activ-
ities of puriÞed recombinant P-Rex1 proteins with the relevant
phospho-deÞcient and phospho-mimetic point mutations. Future
analysis of Ser834 and Ser1001, as well as individual serine
residues in the P-Rex1 cluster mutant, is likely to reveal further
PP1�-dependent sites. Of the seven other phosphoserine residue
sites identiÞed, two more (Ser1191 and Ser1200) may be PP1�
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Figure S2 Effects of P-Rex1 and PP1�expression levels on endogenous
Rac1 activity

(A) Endogenous Rac1 activity is not signi�cantly affected by 5-fold variations in P-Rex1
overexpression levels. Myc–P-Rex1 WT levels were titrated over an approximately 5-fold
range by varying the amount of plasmid used for transfection of HEK-293 cells. Cells
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Figure S3 MS analysis of P-Rex1

EE–P-Rex1 WT and EE–P-Rex1 VAFA were expressed in PAE cells (without exogenous PP1� ) and anti-EE immunoprecipitates subjected to SDS/PAGE. P-Rex1 bands were isolated, digested either
with trypsin, chymotrypsin or AspN, and subjected to LC–MS/MS. (A) Phosphopeptides and serine phosphorylation sites (bold red) identi�ed in P-Rex1 WT and P-Rex1 VAFA. Mox, methionine
sulfoxide. (B) A 96% coverage (residues in red) was achieved and revealed ten phosphoserine residues (highlighted in yellow) both in P-Rex1 WT and P-Rex1 VAFA. The RVxF motif is highlighted in
green. (C) Conservation of the ten identi�ed phosphoserine sites throughout P-Rex1 evolution. The alignment was performed with ClustalX. Red, conserved residues; blue, fairly conserved residues;
green, residues conserved by structural similarity; black, divergent residues.
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