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Redundancy and compensation provide robustness to biological systems but may
contribute to therapy resistance. Both tumor-associated macrophages (TAMs) and Foxp3+

regulatory T (Treg) cells promote tumor progression by limiting antitumor immunity. Here we
show that genetic ablation of CSF1 in colorectal cancer cells reduces the influx of
immunosuppressive CSF1R+ TAMs within tumors. This reduction in CSF1-dependent
TAMs resulted in increased CD8+ T cell attack on tumors, but its effect on tumor growth was
limited by a compensatory increase in Foxp3+ Treg cells. Similarly, disruption of Treg cell
activity through their experimental ablation produced moderate effects on tumor growth and
was associated with elevated numbers of CSF1R+ TAMs. Importantly, codepletion of
CSF1R+ TAMs and Foxp3+ Treg cells resulted in an increased influx of CD8+ T cells,
augmentation of their function, and a synergistic reduction in tumor growth. Further,
inhibition of Treg cell activity either through systemic pharmacological blockade of PI3K
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Introduction
Tumors grow in immunocompetent hosts despite the ability of  the adaptive immune system to rec-
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that genetic inactivation of  PI3Kδ in mice protects against a wide range of  solid tumors (27). This immu-
nomodulatory effect was due to the inactivation of  PI3Kδ in CD4+Foxp3+ Treg cells, unleashing CD8+ 
cytotoxic T lymphocytes which could then induce tumor regression (27). The PI3Kδ inhibitor, idelalisib 
(Zydelig, Gilead) has proven highly effective for the treatment of  chronic lymphocytic leukemia (26), and 
exerts its main effect by blocking the interactions between lymphocytic leukemia cells and stromal cells in 
their lymphoid niche. However, the extent to which PI3Kδ
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Given the observation that CSF1R+
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these data indicate that CSF1R+ TAMs express PD-L1, secrete TGF-β1, and are capable of  limiting CD8+ 
T lymphocyte proliferation ex vivo, but other sources of  immunosuppression may contribute to the failure 
of  total tumor rejection with CSF1 ablation alone.

Depletion of  CSF1R+ macrophages synergizes with genetic ablation of  Foxp3+ Treg cells and with deletion of  
PI3Kδ specifically in the Foxp3+ Treg compartment. To determine the dependence of  MC38 tumors on Treg-
mediated immunosuppression, we depleted Treg cells from MC38 tumor-bearing Foxp3
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Recent studies indicate that PI3Kδ plays an important role in the maturation of  Foxp3+ Treg cells 
and that this effect can supercede a smaller role for PI3Kδ in CD8+ T cell function, such that tumors 
relying heavily on Treg -mediated suppression of  CD8+ T cells for growth can be inhibited by deletion 
of  PI3Kδ (27). We investigated a potential role for PI3Kδ in the MC38 model using mice with a Treg-
specific deletion of  PI3Kδ. 
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TAMs and Foxp3+ Treg cells might contribute to monotherapy resistance (Figure 5A). To this end, 
C57BL/6 mice were orally dosed with 40 mg/kg PLX3397 and/or 100 mg/kg idelalisib daily from day 
7 after tumor implantation, when the tumors became palpable. Control mice received vehicle (0.5% w/v 
methylcellulose). Importantly, and consistent with compensatory immunosuppression driving therapy 
resistance to immune monotherapy, only tumors treated with the combination of  PLX3397 and idelalisib 
showed a statistically significant reduction in tumor growth and primary tumor mass (Figure 5, B and C). 
By contrast, single-agent PLX3397 or idelalisib-treated tumors grew at the same rates compared with the 

Figure 5. Combined inhibition of CSF1R and PI3Kδ effectively blocks tumor immunosuppression. (A) Graphical abstract. (
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vehicle controls. As a confirmation of  the depletion of  TAMs by PLX3397, we detected a reduced pro-
portion of  CSF1R+ macrophages among intratumoral myeloid cells by flow cytometry (Figure 5, D and 
E). Similarly, flow cytometry confirmed the depletion of  Treg cells by idelalisib as a reduced proportion 
of  CD4+ Foxp3+ Treg cells among intratumoral lymphocytes (Figure 5, F and G). Consistent with a syn-
ergistic reversal of  immunosuppression, we detected an increase in CSF1R+ macrophages in idelalisib-
treated tumors (Figure 5, D and E), an increase in Foxp3+ Treg cells in PLX3397-treated tumors (Figure 
5, F and G), and a significant increase in the proportion of  CD8+ T lymphocytes among CD45+ cells in 
the MC38 tumors treated with the combination of  PLX3397 and idelalisib (Figure 5, H and I). Further, 
we detected similar synergistic effects when combining CSF1 blockade with PI3Kδ inhibition in the 
B16-F10 tumor model (Supplemental Figure 3, A and B). Collectively, these findings provide evidence of  
compensatory immunosuppression between CSF1R+ macrophages and PI3Kδ-driven Foxp3+ Treg cells 
and provide a rationale for combinatorial therapy using CSF1- and PI3Kδ-targeted approaches.

Discussion
TAMs and Treg cells are critical components of  the tumor microenvironment, and contribute to every 
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tumor implantation. Tumor growth was monitored as described above, and processing of  tissues at the 
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