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Redundancy and compensation provide robustness to biological systems but may

contribute to therapy resistance. Both tumor-associated macrophages (TAMs) and Foxp3*
regulatory T (Treg) cells promote tumor progression by limiting antitumor immunity. Here we
show that genetic ablation of CSF1 in colorectal cancer cells reduces the influx of

immunosuppressive CSF1R™ TAMs within tumors. This reduction in CSF1-dependent
TAMs resulted in increased CD8™ T cell attack on tumors, but its effect on tumor growth was
limited by a compensatory increase in Foxp3* Treg cells. Similarly, disruption of Treg cell
activity through their experimental ablation produced moderate effects on tumor growth and
waesdodmteR with elevated numbers of CSF1IR* TAMSs. Importantly, codepletion of
CSF1R* TMesszetibRa{p3* Treg cells resulted in an increased influx of CD8* T cells,
augmentation of their function, and a synergistic reduction in tumor growth. Further,
inhibition of Treg cell activity either through systemic pharmacological blockade of PI3K
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Tumors grow in immunocompetent hosts despite the ability of the adaptive immune system to rec-
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that genetic inactivation of PI3Kd in mice protects against a wide range of solid tumors (27). This immu-
nomodulatory effect was due to the inactivation of PI3Kd in CD4*Foxp3* Treg cells, unleashing CD8*
cytotoxic T lymphocytes which could then induce tumor regression (27). The PI3K3 inhibitor, idelalisib
(Zydelig, Gilead) has proven highly effective for the treatment of chronic lymphocytic leukemia (26), and
exerts its main effect by blocking the interactions between lymphocytic leukemia cells and stromal cells in
their lymphoid niche. However, the extent to which PI3Kd
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Given the observation that CSF1R*
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these data indicate that CSF1R* TAMs express PD-L1, secrete TGF-B,, and are capable of limiting CD8*
T lymphocyte proliferation ex vivo, but other sources of immunosuppression may contribute to the failure
of total tumor rejection with CSF1 ablation alone.

Df Jetre meFI\ m /f"i v 8 erkes w’ﬁfe etly | the fo 3 pe @k" d‘vlﬁ deetro o
»3 55,» e o [yt t‘ieFoa 3+ yg 9, r e 1. TO determine the dependence of MC38 tumors on Treg-
mediated |mmunosuppre35|on we depleted Treg cells from MC38 tumor-bearing Fe;_ 3
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Recent studies indicate that PI3KJ plays an important role in the maturation of Foxp3* Treg cells
and that this effect can supercede a smaller role for PI3Kd in CD8* T cell function, such that tumors
relying heavily on Treg -mediated suppression of CD8* T cells for growth can be inhibited by deletion
of PI3KJ (27). We investigated a potential role for PI3Kd in the MC38 model using mice with a Treg-
specific deletion of PI3KJd.
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Figure 5. Combined inhibition of CSFIR and PI3K3 e ectively blocks tumor immunosuppression. (A) G. a+" car abrsjac, i

TAMs and Foxp3* Treg cells might contribute to monotherapy resistance (Figure 5A). To this end,
C57BL/6 mice were orally dosed with 40 mg/kg PLX3397 and/or 100 mg/kg idelalisib daily from day
7 after tumor implantation, when the tumors became palpable. Control mice received vehicle (0.5% w/v
methylcellulose). Importantly, and consistent with compensatory immunosuppression driving therapy
resistance to immune monotherapy, only tumors treated with the combination of PLX3397 and idelalisib
showed a statistically significant reduction in tumor growth and primary tumor mass (Figure 5, B and C).
By contrast, single-agent PLX3397 or idelalisib-treated tumors grew at the same rates compared with the
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vehicle controls. As a confirmation of the depletion of TAMSs by PLX3397, we detected a reduced pro-
portion of CSF1R* macrophages among intratumoral myeloid cells by flow cytometry (Figure 5, D and
E). Similarly, flow cytometry confirmed the depletion of Treg cells by idelalisib as a reduced proportion
of CD4* Foxp3* Treg cells among intratumoral lymphocytes (Figure 5, F and G). Consistent with a syn-
ergistic reversal of immunosuppression, we detected an increase in CSF1R* macrophages in idelalisib-
treated tumors (Figure 5, D and E), an increase in Foxp3* Treg cells in PLX3397-treated tumors (Figure
5, F and G), and a significant increase in the proportion of CD8* T lymphocytes among CD45* cells in
the MC38 tumors treated with the combination of PLX3397 and idelalisib (Figure 5, H and I). Further,
we detected similar synergistic effects when combining CSF1 blockade with PI3Kd inhibition in the
B16-F10 tumor model (Supplemental Figure 3, A and B). Collectively, these findings provide evidence of
compensatory immunosuppression between CSF1R* macrophages and P13Kd-driven Foxp3* Treg cells
and provide a rationale for combinatorial therapy using CSF1- and P13KJé-targeted approaches.

Discussion
TAMs and Treg cells are critical components of the tumor microenvironment, and contribute to every
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tumor implantation. Tumor growth was monitored as described above, and processing of tissues at the
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