The 香港六合论坛 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.

Open Access
Azzi C, Rayon T Signalling, Epigenetics

Temporal control is central to deploy and coordinate genetic programs during development. At present, there is limited understanding of the molecular mechanisms that govern the duration and speed of developmental processes. Timing mechanisms may run in parallel and/or interact with each other to integrate temporal signals throughout the organism. In this piece, we consider findings on the extrinsic control of developmental tempo and discuss the intrinsic roles of cell cycle, metabolic rates, protein turnover, and post-transcriptional mechanisms in the regulation of tempo during neural development.

+view abstract Current opinion in genetics & development, PMID: 38648722

Open Access
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M Epigenetics

Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging.

+view abstract BMC biology, PMID: 38600550

Open Access
Adamowski M, Sharma Y, Molcan T, Wo艂odko K, Kelsey G, Galv茫o AM Epigenetics

Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16聽weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.

+view abstract Scientific reports, PMID: 38580672

Cheetham M, Davies D, Hall C, Petersen CC, Schulte R, Walker R Flow Cytometry

Cell sorting is a technique commonly used in academic and biotechnology laboratories in order to separate out cells or particles of interest from heterogeneous populations. Cell sorters use the same principles as flow cytometry analyzers, but instead of cell populations passing to the waste of the instrument, they can be collected for further studies including DNA sequencing as well as other genomic, in vitro and in vivo experiments. This chapter aims to give an overview of cell sorting, the different types of cell sorters, details on how a cell sorter works, as well as protocols that are useful when embarking on a journey with cell sorting.

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 38526785

Superti-Furga G, Agostinho M, Bury J, Cook S, Durinx C, Ender A, van Luenen H, Lund AH, Medema RH, Mi膮czy艅ska M, Nickel D, Pelicci PG, Puisieux A, Ripatti S, Sander M, Schubeler D, Serrano L, Sommer T, Sonne-Hansen K, Toman膷谩k P, Vives J, Vontas J, Bettencourt-Dias M Signalling, Epigenetics, Immunology

The diverse range of organizations contributing to the global research ecosystem is believed to enhance the overall quality and resilience of its output. Mid-sized autonomous research institutes, distinct from universities, play a crucial role in this landscape. They often lead the way in new research fields and experimental methods, including those in social and organizational domains, which are vital for driving innovation. The EU-LIFE alliance was established with the goal of fostering excellence by developing and disseminating best practices among European biomedical research institutes. As directors of the 15 EU-LIFE institutes, we have spent a decade comparing and refining our processes. Now, we are eager to share the insights we've gained. To this end, we have crafted this Charter, outlining 10 principles we deem essential for research institutes to flourish and achieve ground-breaking discoveries. These principles, detailed in the Charter, encompass excellence, independence, training, internationality and inclusivity, mission focus, technological advancement, administrative innovation, cooperation, societal impact, and public engagement. Our aim is to inspire the establishment of new institutes that adhere to these principles and to raise awareness about their significance. We are convinced that they should be viewed a crucial component of any national and international innovation strategies.

+view abstract FEBS letters, PMID: 38514456

Panova V, Richard AC Immunology

Upon lymphocyte stimulation, accumulation of intracellular NAD(H) reflects the strength of antigen receptor signals and controls the rate of cell cycle entry and proliferation (see related Research Article by Turner .).

+view abstract Science immunology, PMID: 38489351

Giaccari C, Cecere F, Argenziano L, Pagano A, Galvao A, Acampora D, Rossi G, Hay Mele B, Acurzio B, Coonrod S, Cubellis MV, Cerrato F, Andrews S, Cecconi S, Kelsey G, Riccio A Epigenetics

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.

+view abstract Genes & development, PMID: 38453481

Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJH, Simon HU, Galluzzi L, Luo S, Xu D, Gu W, Peulen O, Cai Q, Rubinsztein DC, Chi JT, Zhang DD, Li C, Toyokuni S, Liu J, Roh JL, Dai E, Juhasz G, Liu W, Zhang J, Yang M, Liu J, Zhu LQ, Zou W, Piacentini M, Ding WX, Yue Z, Xie Y, Petersen M, Gewirtz DA, Mandell MA, Chu CT, Sinha D, Eftekharpour E, Zhivotovsky B, Besteiro S, Gabrilovich DI, Kim DH, Kagan VE, Bayir H, Chen GC, Ayton S, L眉nemann JD, Komatsu M, Krautwald S, Loos B, Baehrecke EH, Wang J, Lane JD, Sadoshima J, Yang WS, Gao M, M眉nz C, Thumm M, Kampmann M, Yu D, Lipinski MM, Jones JW, Jiang X, Zeh HJ, Kang R, Klionsky DJ, Kroemer G, Tang D Signalling

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.

+view abstract Autophagy, PMID: 38442890

Open Access
Nakanoh S, Sham K, Ghimire S, Mohorianu I, Rayon T, Vallier L Signalling, Epigenetics

Mechanisms specifying amniotic ectoderm and surface ectoderm are unresolved in humans due to their close similarities in expression patterns and signal requirements. This lack of knowledge hinders the development of protocols to accurately model human embryogenesis. Here, we developed a human pluripotent stem cell model to investigate the divergence between amniotic and surface ectoderms. In the established culture system, cells differentiated into functional amnioblast-like cells. Single-cell RNA sequencing analyses of amnioblast differentiation revealed an intermediate cell state with enhanced surface ectoderm gene expression. Furthermore, when the differentiation started at the confluent condition, cells retained the expression profile of surface ectoderm. Collectively, we propose that human amniotic ectoderm and surface ectoderm are specified along a common nonneural ectoderm trajectory based on cell density. Our culture system also generated extraembryonic mesoderm-like cells from the primed pluripotent state. Together, this study provides an integrative understanding of the human nonneural ectoderm development and a model for embryonic and extraembryonic human development around gastrulation.

+view abstract Science advances, PMID: 38427729

Briffa A, Menon G, Movilla Miangolarra A, Howard M Epigenetics

Understanding the mechanistic basis of epigenetic memory has proven to be a difficult task due to the underlying complexity of the systems involved in its establishment and maintenance. Here, we review the role of computational modeling in helping to unlock this complexity, allowing the dissection of intricate feedback dynamics. We focus on three forms of epigenetic memory encoded in gene regulatory networks, DNA methylation, and histone modifications and discuss the important advantages offered by plant systems in their dissection. We summarize the main modeling approaches involved and highlight the principal conceptual advances that the modeling has enabled through iterative cycles of predictive modeling and experiments. Lastly, we discuss remaining gaps in our understanding and how intertwined theory and experimental approaches might help in their resolution. Expected final online publication date for the , Volume 75 is May 2024. Please see for revised estimates.

+view abstract Annual review of plant biology, PMID: 38424070

Weatherdon L, Stuart K, Cassidy MA, de la G谩ndara AM, Okkenhaug H, Muellener M, Mckenzie G, Cook SJ, Gilley R Signalling,Imaging

The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is activated in cancer due to mutations in RAS proteins (especially KRAS), BRAF, CRAF, MEK1 and MEK2. Whilst inhibitors of KRASG12C (lung adenocarcinoma) and BRAF and MEK1/2 (melanoma and colorectal cancer) are clinically approved, acquired resistance remains a problem. Consequently, the search for new inhibitors (especially of RAS proteins), new inhibitor modalities and regulators of this pathway, which may be new drug targets, continues and increasingly involves cell-based screens with small molecules or genetic screens such as RNAi, CRISPR or Protein Interference. Here we describe cell lines that exhibit doxycycline-dependent expression KRASG12V or BRAFV600E and harbour a stably integrated EGR1:EmGFP reporter gene that can be detected by flow cytometry, high-content microscopy or immunoblotting. KRASG12V or BRAFV600E-driven EmGFP expression is inhibited by MEK1/2 or ERK1/2 inhibitors (MEKi and ERKi). BRAFi inhibit BRAFV600E-driven EmGFP expression but enhance the response to KRASG12V, recapitulating paradoxical activation of wild type RAF proteins. In addition to small molecules, expression of iDab6, encoding a RAS-specific antibody fragment inhibited KRASG12V- but not BRAFV600E-driven EmGFP expression. Finally, substitution of EmGFP for a bacterial nitroreductase gene allowed KRASG12V or BRAFV600E to drive cell death in the presence of a pro-drug, which may allow selection of pathway inhibitors that promote survival. These cell lines should prove useful for cell-based screens to identify new regulators of KRAS- or BRAF-dependent ERK1/2 signalling (drug target discovery) as well as screening or triaging 'hits' from drug discovery screens.

+view abstract The Biochemical journal, PMID: 38381045

Rebak AS, Hendriks IA, Elsborg JD, Buch-Larsen SC, Nielsen CH, Terslev L, Kirsch R, Damgaard D, Doncheva NT, Lennartsson C, Ryk忙r M, Jensen LJ, Christophorou MA, Nielsen ML Epigenetics

Despite the importance of citrullination in physiology and disease, global identification of citrullinated proteins, and the precise targeted sites, has remained challenging. Here we employed quantitative-mass-spectrometry-based proteomics to generate a comprehensive atlas of citrullination sites within the HL60 leukemia cell line following differentiation into neutrophil-like cells. We identified 14,056 citrullination sites within 4,008 proteins and quantified their regulation upon inhibition of the citrullinating enzyme PADI4. With this resource, we provide quantitative and site-specific information on thousands of PADI4 substrates, including signature histone marks and transcriptional regulators. Additionally, using peptide microarrays, we demonstrate the potential clinical relevance of certain identified sites, through distinct reactivities of antibodies contained in synovial fluid from anti-CCP-positive and anti-CCP-negative people with rheumatoid arthritis. Collectively, we describe the human citrullinome at a systems-wide level, provide a resource for understanding citrullination at the mechanistic level and link the identified targeted sites to rheumatoid arthritis.

+view abstract Nature structural & molecular biology, PMID: 38321148

Park AY, Leney-Greene M, Lynberg M, Gabrielski JQ, Xu X, Schwarz B, Zheng L, Balasubramaniyam A, Ham H, Chao B, Zhang Y, Matthews HF, Cui J, Yao Y, Kubo S, Chanchu JM, Morawski AR, Cook SA, Jiang P, Ravell JC, Cheng YH, George A, Faruqi A, Pagalilauan AM, Bergerson JRE, Ganesan S, Chauvin SD, Aluri J, Edwards-Hicks J, Bohrnsen E, Tippett C, Omar H, Xu L, Butcher GW, Pascall J, Karakoc-Aydiner E, Kiykim A, Maecker H, Tezcan 陌, Esenboga S, Heredia RJ, Akata D, Tekin S, Kara A, Kuloglu Z, Unal E, Kendirli T, Dogu F, Karabiber E, Atkinson TP, Cochet C, Filhol O, Bosio CM, Davis MM, Lifton RP, Pearce EL, Daumke O, Aytekin C, 艦ahin GE, Aksu A脺, Uzel G, Koneti Rao V, Sari S, Boztug K, Cagdas D, Haskologlu S, Ikinciogullari A, Schwefel D, Vilarinho S, Baris S, Ozen A, Su HC, Lenardo MJ Immunology

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.

+view abstract Nature immunology, PMID: 38172257

Open Access
Sunshine HL, Cicchetto AC, Kaczor-Urbanowicz KE, Ma F, Pi D, Symons C, Turner M, Shukla V, Christofk HR, Vallim TA, Iruela-Arispe ML Immunology

Vascular morphogenesis requires a delicate gradient of Notch signaling controlled, in part, by the distribution of ligands (Dll4 and Jagged1). How Jagged1 (JAG1) expression is compartmentalized in the vascular plexus remains unclear. Here, we show that Jag1 mRNA is a direct target of zinc-finger protein 36 (ZFP36), an RNA-binding protein involved in mRNA decay that we find robustly induced by vascular endothelial growth factor (VEGF). Endothelial cells lacking ZFP36 display high levels of JAG1 and increase angiogenic sprouting in聽vitro. Furthermore, mice lacking Zfp36 in endothelial cells display mispatterned and increased levels of JAG1 in the developing retinal vascular plexus. Abnormal levels of JAG1 at the sprouting front alters NOTCH1 signaling, increasing the number of tip cells, a phenotype that is rescued by imposing haploinsufficiency of Jag1. Our findings reveal an important feedforward loop whereby VEGF stimulates ZFP36, consequently suppressing Jag1 to enable adequate levels of Notch signaling during sprouting angiogenesis.

+view abstract Cell reports, PMID: 38157296

Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI Signalling

Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.

+view abstract Advances in biological regulation, PMID: 38081756

Open Access
Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE Signalling,Imaging, Mass Spectrometry, Bioinformatics, Flow Cytometry

Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. , Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating 尾2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including 伪Pix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially 伪Pix, Git2, Psd4, and 14-3-3味/未, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and 尾2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.

+view abstract Frontiers in immunology, PMID: 38077328

Open Access
Petkau G, Mitchell TJ, Evans MJ, Matheson L, Salerno F, Turner M Immunology

How individual T cells compete for and respond to IL-2 at the molecular level, and, as a consequence, how this shapes population dynamics and the selection of high-affinity clones is still poorly understood. Here we describe how the RNA binding protein ZFP36L1, acts as a sensor of TCR affinity to promote clonal expansion of high-affinity CD8 T cells. As part of an incoherent feed-forward loop, ZFP36L1 has a nonredundant role in suppressing multiple negative regulators of cytokine signaling and mediating a selection mechanism based on competition for IL-2. We suggest that ZFP36L1 acts as a sensor of antigen affinity and establishes the dominance of high-affinity T cells by installing a hierarchical response to IL-2.

+view abstract European journal of immunology, PMID: 38039407

Open Access
Screen M, Matheson LS, Howden AJ, Strathdee D, Willis AE, Bushell M, Sansom O, Turner M Immunology

EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete , or in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.

+view abstract Life science alliance, PMID: 38011999

Rivron NC, Martinez-Arias A, Sermon K, Mummery C, Sch枚ler HR, Wells J, Nichols J, Hadjantonakis AK, Lancaster MA, Moris N, Fu J, Sturmey RG, Niakan K, Rossant J, Kato K Epigenetics

There is no abstract provided for this publication

+view abstract Nature cell biology, PMID: 37985870

Open Access
Imaz-Rosshandler I, Rode C, Guibentif C, Harland LTG, Ton MN, Dhapola P, Keitley D, Argelaguet R, Calero-Nieto FJ, Nichols J, Marioni JC, de Bruijn MFTR, G枚ttgens B Epigenetics

Early organogenesis represents a key step in animal development, where pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-hour intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled time course of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-Seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-Seq to transcriptionally determine cell fates of grafted primitive streak regions after 24h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.

+view abstract Development (Cambridge, England), PMID: 37982461

Open Access
Belkina AC, Roe CE, Tang VA, Back JB, Bispo C, Conway A, Chakraborty U, Daniels KT, de la Cruz G, Ferrer-Font L, Filby A, Gravano DM, Gregory MD, Hall C, Kukat C, Mozes A, Ordo帽ez-Rueda D, Orlowski-Oliver E, Pesce I, Porat Z, Poulton NJ, Reifel KM, Rieger AM, Sheridan RTC, Van Isterdael G, Walker RV Flow Cytometry

The purpose of this document is to provide guidance for establishing and maintaining growth and development of flow cytometry shared resource laboratories. While the best practices offered in this manuscript are not intended to be universal or exhaustive, they do outline key goals that should be prioritized to achieve operational excellence and meet the needs of the scientific community. Additionally, this document provides information on available technologies and software relevant to shared resource laboratories. This manuscript builds on the work of Barsky et al. 2016 published in Cytometry Part A and incorporates recent advancements in cytometric technology. A flow cytometer is a specialized piece of technology that require special care and consideration in its housing and operations. As with any scientific equipment, a thorough evaluation of the location, space requirements, auxiliary resources, and support is crucial for successful operation. This comprehensive resource has been written by past and present members of the International Society for Advancement of Cytometry (ISAC) Shared Resource Laboratory (SRL) Emerging Leaders Program with extensive expertise in managing flow cytometry SRLs from around the world in different settings including academia and industry. It is intended to assist in establishing a new flow cytometry SRL, re-purposing an existing space into such a facility, or adding a flow cytometer to an individual lab in academia or industry. This resource reviews the available cytometry technologies, the operational requirements, and best practices in SRL staffing and management.

+view abstract Cytometry. Part A : the journal of the International Society for Analytical Cytology, PMID: 37941128

Taylor D, Sousa B, West G, Neo Huipeng A, Lopez-Clavijo AF Lipidomics

Extraction protocols and liquid chromatography coupled with mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) methods for the measurement of four lipid categories, namely glycerophospholipids, glycerolipids, sphingolipids and sterol lipids in human plasma, are described here. Step-by-step instructions are provided for the liquid-liquid extraction methods, including solution preparation and the non-endogenous lipid internal standards used. All instrumental conditions, chromatography columns and solutions required for the LC-MS and LC-MS/MS methods are also provided in detail.

+view abstract Rapid communications in mass spectrometry : RCM, PMID: 37882103

Open Access
Johansen VBI, Hampson E, Tsonou E, Pantarelli C, Chu JY, Crossland L, Okkenhaug H, Massey AJ, Hornigold DC, Welch HCE, Chetwynd SA Signalling,Imaging

Norbin is an adaptor protein that binds numerous G protein-coupled receptors (GPCRs), is highly expressed in neurons, and is essential for a functioning nervous system in rodent models. Yet, beyond its control of neurite outgrowth and synaptic plasticity, few cellular roles of Norbin have been investigated to date. Furthermore, while Norbin is known to regulate the steady-state cell surface levels of several GPCRs, only in one case has the protein been shown to control the agonist-induced receptor internalisation which serves to attenuate GPCR signalling. Here, we generated a Norbin-deficient PC12 cell line which enabled us to study both the cellular functions of Norbin and its roles in GPCR trafficking and signalling. We show that Norbin limits cell size and spreading, and is required for the growth, viability and cell cycle progression of PC12 cells. We also found that Norbin regulates both the steady-state surface level and agonist-induced internalisation of the GPCR sphingosine-1-phosphate receptor 1 (S1PR1) in these cells, suggesting that its role in agonist-dependent GPCR trafficking is more widespread than previously appreciated. Finally, we show that Norbin limits the S1P-stimulated activation of Akt and p38 Mapk, and is required for the activation of Erk in PC12 cells. Together, our findings provide a better understanding of the cellular functions of Norbin and its control of GPCR trafficking.

+view abstract Scientific reports, PMID: 37880240

Open Access
Alanis-Lobato G, Bartlett TE, Huang Q, Simon CS, McCarthy A, Elder K, Snell P, Christie L, Niakan KK Epigenetics

Recent advances in single-cell omics have transformed characterisation of cell types in challenging-to-study biological contexts. In contexts with limited single-cell samples, such as the early human embryo inference of transcription factor-gene regulatory network (GRN) interactions is especially difficult. Here, we assessed application of different linear or non-linear GRN predictions to single-cell simulated and human embryo transcriptome datasets. We also compared how expression normalisation impacts on GRN predictions, finding that transcripts per million reads outperformed alternative methods. GRN inferences were more reproducible using a non-linear method based on mutual information (MI) applied to single-cell transcriptome datasets refined with chromatin accessibility (CA) (called MICA), compared with alternative network prediction methods tested. MICA captures complex non-monotonic dependencies and feedback loops. Using MICA, we generated the first GRN inferences in early human development. MICA predicted co-localisation of the AP-1 transcription factor subunit proto-oncogene JUND and the TFAP2C transcription factor AP-2纬 in early human embryos. Overall, our comparative analysis of GRN prediction methods defines a pipeline that can be applied to single-cell multi-omics datasets in especially challenging contexts to infer interactions between transcription factor expression and target gene regulation.

+view abstract Life science alliance, PMID: 37879938