香港六合论坛

Sharpe Group

Sharpe Group
Sharpe Group

Research Summary

We are interested in understanding how the cells that make up our tissues and organs communicate. Our cells are decorated with proteins, or receptors, that can sense alterations in their local environment and promote signalling pathways leading to changes in behaviour such as growth, movement or attachment. We focus on receptors that communicate to the cell interior through an enzyme known as a protein phosphatase. These receptor tyrosine phosphatases can change the function of other proteins by catalysing the removal of phosphate groups. The principles of how these receptors contribute to signalling remain poorly understood.

The receptor tyrosine phosphatases are linked to diverse areas of biology from immune cell signalling to blood vessel development to cell-cell adhesion, with some implicated in disease processes such as spinal cord injury, wound healing and cancer. Importantly, protein tyrosine phosphatases are targets of reactive oxygen species, which serve as critical signalling molecules that can be dysregulated in ageing and disease.

Our recent work has led us to focus on how protein tyrosine phosphatases are influenced by the cellular microenvironment. First by the presence of the chemical second messenger hydrogen peroxide, and secondly by mechanical cues, which are known to influence cellular protein tyrosine phosphorylation. To understand the normal and pathological functions of phosphatases we use biochemistry, proteomics, primary and cancer cell lines, as well as mouse models. 

 

Latest Publications

Open Access
Azzi C, Rayon T Signalling , Epigenetics

Temporal control is central to deploy and coordinate genetic programs during development. At present, there is limited understanding of the molecular mechanisms that govern the duration and speed of developmental processes. Timing mechanisms may run in parallel and/or interact with each other to integrate temporal signals throughout the organism. In this piece, we consider findings on the extrinsic control of developmental tempo and discuss the intrinsic roles of cell cycle, metabolic rates, protein turnover, and post-transcriptional mechanisms in the regulation of tempo during neural development.

+view abstract Current opinion in genetics & development, PMID: 38648722

Open Access
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M Epigenetics

Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging.

+view abstract BMC biology, PMID: 38600550

Open Access
Adamowski M, Sharma Y, Molcan T, Wo艂odko K, Kelsey G, Galv茫o AM Epigenetics

Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16聽weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.

+view abstract Scientific reports, PMID: 38580672

Group Members

Hayley Sharpe

Group Leader

Silvia Aldaz-Casanova

Laboratory Manager

Roksana Dutkiewicz

PhD Student

Tiffany Lai

PhD Student

Katie Mulholland

Postdoc Research Scientist

Oisharja Rahman

PhD Student

Katarzyna Wojdyla

Postdoc Research Scientist